TRIPLE

Beverage

#TM-3-HPR

Inlets
2
Inlet Gases
CO2, N2
Outlet Blends
3
Inlet Pressure Range
45-55
Max Inlet Pressure
150
Outlet Options
P&P ILLI Option
Connections
1/4, 5/16, 3/8
Flow
Standard
TRIPLE Gas Blending

Specifications

Dimensions: 9.5″ W x 10″ H x 4.5″ D

Outlet Pressure: Maximum outlet pressure will always be 10 psi lower than the minimum inlet pressure. Secondary regulators should be used with the Trumix® Triple as it does not have adjustable outlet regulators.

Standard Flow Capacity:

  • At 55 psi minimum inlet pressure, up to 12 kegs/hour per blend

Accuracy and Flow Range: Maintains accuracy of +/- 2% of full scale or better within the flow range of 0.4 to 40 liters per minute (0.85 to 85 cfh.)

Our Trumix® blenders mix CO2 and N2 on demand and are best used for long-draw draft systems. The Trumix® Triple blender comes preset with your custom blends to best fit your system. The panel mounts easily on the wall and is simple to install. With the Trumix® Triple HP blender, customization of the blends gives you endless options and the flexibility to expand your draft beer selection. You could include low-CO2-content nitrogenated beers, high-CO2-content German-style beers, and domestic drafts on one system without the need for additional premixed cylinders.

Not sure which blends you need? Download the McDantim EasyBlend app, available on Android and iOS.

Features:

  • Upgraded metal body inlet regulators to increase durability and safety

  • Easy installation.

  • No electrical setup is required.

  • 5-Year Limited Warranty

  • Custom Blends: Each blender is built to order to suit your needs.

  • Does not operate if either supply gas fails or becomes empty.

  • Optional Plug & Play In-Line Leak Indicator package (MV097)

Documentation

Beer Check Installation Instructions
Trumix® Beverage Triple Installation Instructions

Gas Supply Nonsense

Why Mixed Gas?

Generations of women in the Smith family had prepared pot roast the same way: cutting the ends off the roast. The youngest daughter asked why, and after a chain of weird conversations, the answer was: The pot roast didn’t fit in the super small oven the great-great-grandmother had, so she chopped the ends off. If it ain’t broke, don’t fix it. But sometimes, something we are used to doing or experiencing needs another viewpoint for improvement.

People are used to wasting beer. Bartenders open the tap and stick the glass under the faucet. Owners think the 2 gallons of beer that gets dumped from the bucket at the end of the night is normal. One of our first customers was a college bar with a direct draw and 60+ beers on tap. He told us that the blender saved him over $2,000/month in wasted beer compared to using 100% CO2.

Just because we’ve done it this way for generations, or because everyone else does it that way, doesn’t mean that it is the only way to do it. The cost of the correct mixed gas can save you the installation cost several times a year and improve your sales.

Another customer upgraded their gas supply without telling any staff and found a 30% increase in sales immediately. The initial beer ordered with dinner was good, so one good beer deserves another. Just because we don’t think it’s broken doesn’t mean we can’t fix it.

If you’re seeing these foaming issues and would like some guidance, call us or your draught system technician. Maybe your draught gas supply would benefit from mixed gas.

 

Written by Kayla Mann; July 2019.

How To: Replacing the Outlet Regulator

Our blends are calibrated in-house and can not be changed in the field. However, if your beer is pouring flat or foamy, your blend or your applied pressure is likely wrong. Many of our national distributors sell a preset blender of 60% CO2, which generally works well for Ale and Lagers. However, this may not be the right blend for some applications. For example, if you are a brew pub pouring from a serving vessel, you are probably limited to 15 psi to push the beer. In that case, you probably need 80-85% CO2 rather than 60%.

There are two ways to determine the correct blend for your system.

  1. Use our Blend Calculator.
  2. Contact us and we’ll help you calculate your blend.

Please contact our Sales Department toll-free at 888-735-5607 to discuss your options.

Check that an adequate supply of both Carbon Dioxide (CO2) and Nitrogen (N2) gases. The Trumix® Gas Blender is designed to shut down if either inlet gas runs out. Running just CO2 or N2 through the blender will ruin the beer, though this is not possible under normal operating conditions.

1. Ensure that the supply gases have adequate pressure for panel operation and adjust as necessary.

2. Locate the input gas connection tubes: (2) one for CO2 and one for Nitrogen (N2.) They are normally the tubes closest to the wall. Locate the label that is affixed to the gas connection face (normally bottom facing the ground.) This label lists the minimum and maximum inlet pressures for the blender as well as the unit’s serial number. Adjust the supply gas regulators to the appropriate minimum setting to ensure proper function. A good “rule of thumb” is to set the supply gas pressure to about 10 psi higher than the minimum recommendation on the panel and provide plenty of gas to the internal input pressure regulators.

3. Locate the mixed gas outlet pressure gauge(s) on the panel (TM-1, TM-2) face. The panel face labeling indicates their location.

a. New blender units come factory preset to 15 psi.

b. Installed and functioning units will be adjusted by the installing technician to meet the requirements of the draught system. In some cases, the installing technician will write the pressure setting with a marker close to the appropriate output pressure gauge. If not, pressure is indicated on the gauge and supply pressure is adequate. Pull the gray knob adjacent to the gauge out (away from the panel.) It should move about 1/8” and make an audible click. Increase the pressure by turning the knob clockwise (either blend).

c. It is best if the mixed gas outlet ball valve(s) are closed during this procedure.

4. Locate the outlet ball valve(s) on the panel assembly (the front panel labeling indicates their location. Make sure they are on and supply gas to the rest of the draught system.

How To: Setting the Outlet Pressure on the Trumix® Blender
How To: Connecting the Gas Supply to the Trumix® Blender
How To: Mounting the Trumix® Blender
How To: Installing the Trumix® Blender
How To: Pressure & Leak Test for the Trumix® Blender